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High-intensity thermal phenomena for one-dimensional and self-similar two-dimensional versions are the 

object of investigation. The effect of the velocity of motion of the boundaries and the degree of  nonstationarity 

of the thermal process on the behavior of the temperature gradient is considered. The conditions for the 

appearance of  a gradient catastrophe on the boundary of a moving two-dimensional region are analyzed. 

Problems of nonstationary heat transfer that arises in the studied body under the action of nonstationary 

elements of different nature (punching, surface hardening, welding, etc.) are of importance in technological 

thermophysics. The main results for this class of phenomena are obtained on the basis of the parabolic equation 

of heat conduction with a moving point energy source [ 1 ]. Within the framework of the linear hyperbolic problem, 

propagation of thermal waves from the moving edges of cracks in a solid body was studied in [2 ]. It is evident that 

for high-intensity thermal processes initiated in a body by some moving structural element we should study the 

effect of the following factors: 1) relaxation of the heat flux; 2) nonlinear thermophysical properties of the material; 

3) nonlinear heat transfer on the moving boundary; 4) the finite dimensions of the moving region. As applied to 

this class of problems, in what follows nonlinear properties of the temperature gradient on one- and two-dimensional 

boundaries moving in a medium possessing a finite time of heat-flux relaxation are studied: 

0q q + 7 ~ - =  - ~ g r a d T .  (1) 

The nonlinear hyperbolic equation of heat conduction has the form 

c + ~, = div (2 grad ~ ,  c -- c ( r ) ,  7 = Y ( r ) ,  ,l = ;t (7"). (2) 

It was derived in [3, 4 ] for media of the type of (1) by means of variational principles of the phenomena of nonlinear 

relaxational heat transfer. 
This study is aimed at: 1) the development of an analytical approach to the investigation of the local 

properties of the temperature gradient in the vicinity of moving one- and two-dimensional self-similar boundaries; 

2) the study of the effect of the velocity of boundary motion and the degree of nonstationarity of the thermal process 
on the behavior of grad T; 3) an analysis of the role of two-dimensional geometric factors in the formation of the 

structure of the relaxing thermal field. 
1. One-Dimensional Process. At a constant temperature T O there is a stationary medium for which the 

one-dimensional  temperature  field is determined by Eqs. (1) and (2) written in the variables x, t. In 

nondimensionalization of these equations we use, in what follows, scales of quantities that admit invariance of the 

dimensional and dimensionless forms of notation, e.g., qb = AbTb/xb, 2b = cbx~/tb, etc. We consider a thermal process 

in the region with moving boundaries 

0 , X 1 t = O, T =  TO, T t =  T t - const, x E  ( -  o% oo) (0) = x m.(O) = O; 
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t >--- 0 ,  X = X 1 (t)  , T = T 1 ( t)  ; 

x =  x r e ( t ) ,  q = f ( T m )  . (3) 

The  last condition means  that  the boundary  heat  flux is a nonl inear  function of the t empera tu re  T m = T ( x m ,  t) .  

Here  we assume  T 1 (0) = Tin(O) = T 0, f ( T  O) = 0. We represent  the heat  flux in the form 

q (x, t) = f (7") + ~: (x, t ) ,  (4) 

where tc = x ( x ,  t) is an auxi l iary  function that  should satisfy the conditions x(x,  O) -- O, X(Xm,  t) = 0 so that  relat ion 

(4) at x = Xm would turn into the nonl inear  condition of heat  t ransfer  (3). We write the equation for the heat  flux 

in a divergence form using the functions 

( A  4- H ) x  4- 1" t : 0 ,  A (Z)  m ,~ ( T ) ,  F (T) = y (T)  f ( T ) ,  

H x = f + t r  + T x t ,  (5)  

where H -~ H (x ,  t) .  

We introduce a scalar  potential  ~ = ~ (x, t): ~x -- F, ~t -'- - CA + H) ,  and  we replace the variables  x, t by ~, 

t: 

t 
x ( ~ , t ) = f r - l ( ~ , 0 ) d ~ + f ( A + H ) V - l a t ,  r ~ 0 .  (6) 

0 

Thus ,  we have three equations: the equation of heat  t ransfer  (2), Eq. (5), and  the condition (~x)t  = (~t)x of equali ty 

of the mixed derivatives of second order  for the scalar potential. Having t rans formed these equations by means  of 

(6), we obtain a sys tem denoted by  f2(~, t); its description is omit ted here. For  the type of t rans format ions  

ment ioned 2F 2 ~ c),(A +/_/)2,  i.e., the velocity of the thermal  wave is not equal to the velocity of ~-l ine motion.  

We take ~ -- 0 as the bounda ry  of the region where heat t ransfer  takes place according to nonl inear  law (3): 

(x  m, t) = O,  d x m / d t  = [(A + H ) / F ] ~ =  0 . 

The  dependences  x I -- x(~ 1 (t), t), T l -- T(~ 1 (t), t) correspond to the boundary  x = x I (t) in the new variables.  Having  

at our  disposal the equations of f2(~, t) and  the consequences from them obta ined by successive different ia t ion with 

respect to ~, we find, using the Tay lo r  formula,  representat ions  of the sought  functions in the form of polynomials ,  

e.g., 

T (~, t) = T m (t) + ~ Z i (~i/i [) + Rj, ~ ~. [0,  ~1 (t) l C_ [0, ~ l ) ,  
i=1 

where Rj are  the addi t ional  terms in the Lagrange form, 0 < ~1 < 1. We note that  H m ( t )  is an a rb i t r a ry  funct ion 

and  x m  ~" O. Convergence  of the Tay l o r  series can be shown for processes of highly in tense  heat  t ransfer ,  when  the 

second te rm in the le f t -hand  side of Eq. (2) is predominant ,  i.e., the wave mechanism of heat  t ransfer  prevails  over  

diffusion. We assume  that:  1) the functions c(T) ,  2(73, y(73,  f(73 are  analytic;  2) at  the initial ins tant  of t ime T0 

= 0, y(T0) = 0, and  for t > 0 we have ~,(T) > 0; 3) the functions Tin( t ) ,  T l ( t )  = (T~)m,  H m ( t )  are  analy t ic  and  a re  

represented  in the form of power series with a nonzero radius of convergence,  and  Tm(O) = 0, T1 (0) = 0. T h e n  the 

coefficients Ti( t )  , H i ( t )  are  analyt ic  functions possessing the propert ies Ti(O) = O, Hi(O) = O, I T i ( t )  l <_ L 1 < oo, 

IHi ( t )  I < L 2 < m, i > 1, 0 < t < t o < oo. T h e n ,  the cor responding  T a y l o r  ser ies  a re  analy t ic  funct ions .  To  

de termine  the heat  flux by formula  (4), we must  solve Eq. (5). It is not difficult to see that  when the  a sympto t i c  

equalities 

t--> O , .f ( T ) / y  (T )  --> O , ~1 ( t ) / ~ m  (t) ._> O , T 1 ( t ) / ?  m (t) -'> O , 
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Fig. 1. Dependence of the ext remum value of the tempera ture  gradient  on the 

Mach number.  

are fulfilled, the Tay lo r  series x = ~ xi~i/i!, which gives the solution of Eq. (5), converges. 
i=1 

We illustrate the results obtained. Let ). = Ao T, 7 = 70 T, c --- const, f = fo 7~, and the line ~m = 0 propagate 

with a cons tan t  veloci ty d x m / d t  = V > 0. We cons ider  the rmal  processes  on subsonic,  M = V / w  < 1, a n d  

supersonic, M > 1, boundaries.  Here  gasdynamic terminology and a thermal  analog of the Mach n u m b er  are  used. 

The  functions Tin(t), T1 (t), T2(t) are  related by one hyperbolic equation of heat  conduction,  so that  two of them 

are arbi t rary.  We assume that T 1 = alt n-I  and,  to satisfy the conditions of convergence, we represent  T 2 in the 

form of the sum T2 = B + 02, where B(t) corresponds to the terms in the equation of heat conduct ion involving the 

derivative Vd/dt ,  and 02(0 to the remaining terms. Then,  we have 

B = a~ (bo in-2 + bl tk+n-2 + b2t k+n-1 + . . . ) ,  k > 0 .  

A specific assignment of the function B(t) uniquely affects the temperature  T 1 (t) of the opposite boundary  ~ = ~l (t). 

Next,  for the sake of brevity of the formulas, in the last expression we restrict ourselves to the first two terms: b2 

-- 0, b3 = 0, etc.; bo, bl are arbi t rary  nonzero numbers.  Thus,  for the temperature  and the tempera ture  gradient  on 

the boundary  Xm --- Vt we find the formulas 

r a ~  1 = 2 (a + 1) VB1 tk [aY0f 0 (V 2 - w 2) alB 0 (B 0 + Bit  k) ] - 1 ,  

(Tx) m = 2Vt n-1 [(w 2 - 1/2 ) (B 0 + Bl tk )] ,  (7) 

B o = b o ( 1 - n ) > O ,  B l = b l ( 1 - n + k ) > O ,  n > 3 ,  k > 4 ,  a >  1,  

A > 0 ,  

(M 2 -  1) a I > 0 ,  F m < 0 .  

Consequently:  1) the temperature  gradient is opposite to the vector of the velocity of a supersonic boundary ,  and 

in a subsonic process these directions are the same; 2) the modulus of the tempera ture  gradient  is a nonmonotonic  

function of time; 3) expression (7) does not depend on the law of heat t ransfer  (3) ; it is character ized by the values 

of the velocities V, w and the parameters  B0, BI regulating the temperature  T l(t) of the opposite boundary ;  the 

parameters  f0, a of nonl inear  heat  t ransfer  affect the tempera ture  Tin(t) considerably.  For  the class of one-  

dimensional thermal  processes presented here no gradient catastrophe [5 ] appears. 
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Fig. 2. Tempera tu re  dependence of the temperature  gradient on the boundary  

Xra = Vt; the figures at the curves are the values of M. 

We present  an example. We take: c = I; 20 = 1; f0 = 1; 7o = 1; a --- 4; al --- _+0.4; k = 11; n = 4; Bo = I / 3 ;  

Bl = 1/8. Calculations showed that the extremum value of the temperature  gradient  is a monotonically increasing 

function of the Mach number  in both sub- and supersonic processes (see Fig. 1). The  fact that with a monotonic  

dependence  of the boundary  heat flux on the temperature  the temperature  gradient  changes nonmonotonical ly  (Fig. 

2) is important.  In a subsonic case when V > 0 this dependence has a maximum, and in a supersonic case a 
minimum. 

2. Two-Dimensional  Region of Finite Dimensions. For the thermophysical  parameters  we take a power-law 
dependence  on the tempera ture  

c =  CO Ts , A = 2 0  T n ,  7 = ) ' 0  T E ,  e = s - -  r t ,  

and we consider  a plane self-similar version 

a = x + l l r ,  t i = Y + 1 2 ~ ,  r = l n ( t + t 0 ) ,  0 _ < t _ < t l <  oo , t 0 > 0 ,  

7" (t + to)/' o (a,  t i ) ,  q~ (t + to) k"+/' = = u ( a ,  t i ) ,  e k = l ,  

q2 = (t + to) (a ,  t i ) ,  w 2 = 2 0 / ( C o Y o ) .  

According to (2), the type of equation for O(a ,  ti) depends on the sign of the quanti ty l~ + 122 - w20 -z~. We have 

ellipticity for a negative value and hyperbolicity for a positive value. Th e  solution is constructed in a closed plane 

region bounded by the lines ti --fll (a) , /3  = t im(a).  On one of the boundaries  the condition of nonl inear  heat  t ransfe r  
is taken: 

L 1 L 2 

qlm 5"- '7i (t + to) = , q2m = ~ ~i Tbi (t + to) k("+l-bi) (8) 
i=1 i=1 

The  procedure  of construction of the solution in the vicinity of this boundary  is basically similar to the one-  

dimensional case and is not detailed here. We note only that for the components  of the vector of the heat  flux the 
relations 

U = U re(Q)) -4- g ( a ,  f l ) ,  v = v re (O)  "4- h ( a ,  f l ) ,  

based on boundary  conditions (8), are introduced, and the auxil iary functions should satisfy the conditions g(a, 

tim) = O, h(a,  tim) = 0. Then  one of the equations for a component  of the heat  flux is writ ten in divergence form, 

and a potential function ~ = ~(a,  ti) is introduced. Next,  the polar coordinates r, T are used: ~ = r cos ~p, a -- r sin 
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~o. As a result we obtain a system of four equations for the functions O, H,  g, h of the arguments  r, ~o; we call it 

the system V2(r, ~o). The  role of the auxil iary function H is the same here  as in the one-dimensional  case (5). The  

value rrn = 1 is taken as the boundary  of the region where nonl inear  heat t ransfer  (8) occurs,  and  we write it in 

the parametric form fl = ffrn(~o), a = sin ~o. The  equations of Q(r,  ~o) and their  differential  corollaries obtained by 

differentiation with respect to r allow one to construct the solution in the vicinity of r = 1 in the form of polynomials 

using the Tay lor  formula. The  temperature  mode on the second closed boundary  fl = fll (a) ,  O -- O 1 (a) is uniquely 

determined by the choice of the arbi t rary  functions involved in the solution. 

We consider the case Orn - const in more detail: 

- -  Rm 1 flrn (~o) = cos ~o + ~u (sin ~o - I) + B (~o), a m (~o) = sin ~o, (9) 

R;.' B (~o) = H m (~o) cos ~o d~o, ,u = U m / R  m = cons t ,  
or/2 

U = 2 1 m o  On-E+l  +Y012(u m + mOvrn ) ,  m 0 ;~ 0 , 

R = ,,~10n-e+l + Y0/l (Urn + movrn ) , "~1 = 2tO/(n - e + I ) .  

The  arb i t rary  function Hrn(p)  is selected so that the line (9) has two smooth branches that converge at a = _+ 1 and 
bound a closed region of the plane (a, fl): 

B =--2/x,  B =2/x, B ( a r ) = - B ( 2 ~ ) = b l  + , u +  , 

B = - 2 / ~ ,  2/z + b  I > 0 ,  b I = c o n s t .  

For example, we can take 

- B ( ~ o )  =2/~(s in~o)  l+2n! + (b 2 + / ~  + R m  l)(cos~o) 1+2n2, n I > 0 ,  n 2 > I ,  (10) 

where hi ,  n2 are integers. The  boundary  line (9) has the form 

2 2 2 
a + [ ,B-a /~  + / ~ - - B ( ~ , ) ]  R m = l .  

For the second boundary  fl = i l l ( a )  we take r 1 = 1 + 6(~o), 16(~o) I _< 61 < 1, 6(~o i) --- 0, ~(~o i) = 0, 7'i = ~ / 2 ,  i = I,  

.... 5. Then  we have that the lines of both boundaries "stick together" at ~o -- ~oi and have a common tangential  line 
at these points. The  points of the plane (a, fl) 

2 2 
B 2 ( 1 , -  2/~); A 1 (0, bl 2);  B 1 ( -  1 , 0 ) ;  A 2 ( 0 , -  b I - 2/~); b 1 + 2/z > 0 .  (11) 

correspond to the values 9' = 9'i- For the analytical functions Ore(q,), Or(7 ') ,  6(~o) the condit ions of boundedness  
and the properties 

= ~  [ lira ((~i/cos~o)] < oo, lira (6 /cosg , )  = 0 ,  9, i ~ ( 2 j +  1),  j = 0 ,  1 , 2 .  
~'-'~j ~p~pj 

should be fulfilled. Then  we have 
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Fig. 3. Plane two-dimensional region of elliptical shape. 

lira H (r,  ~o) = Hrn (~pj), I lira O~, H r I < = .  

Thus, we have that for the functions O(r, ~p), g(r, ~o), h(r, ~o) the Taylor  series of the form 

O k ( ~ o ) ( r - - 1 ) k / k ! ,  ~oE [ 2 , ' ~ ]  
k=l  

converge for I r -  11 ___ 61 < 1. 

We analyze the version s = 0, n = 1, a t = 2, bl = 2, for which 2 = 2o T, ), = Yo/T ,  c = const. 

The boundary of the region cools off: Trn = Orn/(t + to), t E [0, tl ], and heat  transfer occurs according 
2 

to t he  l aw qlrn = rtT m, q2m = ~ T  . 

As an example we consider the properties of a thermal field on a boundary (9), (10) of elliptical form that  

is obtained for Rrn _> 1, I/zl < 1, 'fi= bl 2 +/~ > 2, where 'fi, according to (I1),  is the relative elongation of the region, 

i.e., the ratio of its length AIA2 to its width, equal to 2 (Fig. 3). This boundary  moves translationally along the O Y  
axis with a velocity Vrn = - 1 2 / ( t  + to) > 0, II = 0. Applying the analog of the Mach number  M = Vrn/w(Trn), we 
distinguish subsonic (M < I),  sonic (M = 1), and  supersonic (M > I) regimes of region motion. The  equation of 

heat transfer (2) entering the system f~(r, ~o) relates the two functions O1 (~), O2(~) on the boundary.  Satisfying 

the conditions of convergence, we take 02  = ~32 + B(ctrn) cos 2 ~p. The function B(ct)  = B 0 + BlCt + ... is arbi trary;  

the quantity ~2  is expressed in terms of Ore, Ol ,  Ol (the description is omitted). Then we have 

Pl = sin ~o - (Urn + Hm) cos ~o, P2 = cos ~o + (Urn + Hm) sin ~ ,  

H m = 3 ('fir m + 1) cos ~o sin ~o - 2Urn, H~o -- 3 ('fiR m + 1) cos 2~p, 

e 1 ~ - - - ~  

2 2 2 
B ( a m )  cos  2 7> [(M 2 - 1) Rrn cos ~o - Pl ] 

MVmcw0201 (I - 3~/rnOml)cos~ - (M 2 - I) V2msin 2 ~ o - H g + p 2 2 "  

The line r = 1 possesses the property that along it the derivative of the temperature in the direction tangential  to 

the boundary equals zero. In this class of solutions the temperature gradient at r = 1 is directed along the normal 
to the boundary  of the region and is characterized by the derivative 

= 0 1  ( R  m c o s ~ p -  Plf lm) [1 + (flrn)2] - ' 2 ,  t i m -  d a  " 
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Fig. S. Dependence between the Mach number and the temperature gradient  

in a "shockless" mode of region motion: front point Al [1) 70 = I, 2) 10 ] and 

rear point A2 [3) Z 0 = 1 ]. 

Fig. 6. Distribution of the temperature gradient along the boundary of a two- 

dimensional region at yo = 1, M, = 1.30 for three modes of motion: 1) M = 

0.1, 2) I, 3) 1.25. 

We present results of numerical calculations at: Ora = 3; c = 1; ;t 0 = 1; tO = 3; /z  = 0.1; b '=  2; B m = 1 

+ 0.2 sin ~,. The  initial (at t = 0) dimensionless time of relaxation 7m(0) = 70 characterizes the degree of 
nonstationarity of the process; we have 70 < 1 if the time scale is larger than the relaxation time; 7 o > 1 if the 

process is rapid. 

We note the main properties of the boundary temperature gradient. For the prescribed shape of the bound- 

ary (the parameters/~, b') and a fixed y0, in motion of the region at a velocity V m corresponding to the critical 

value of the Mach number  M., a gradient catastrophe appears at one or several points of the boundary:  OT/On 

becomes infinitely large. This means that the structure of the temperature field changes qualitatively: the field 

becomes discontinuous, and a shock thermal wave appears [5 ]. For nonlinear media possessing thermal  relaxation 

the problem of the appearance, stability, and propagation of these shock waves was studied in [6-11 ]. At the front 

point AI we have 

M! AI) = tt 0 [3 (bR m + 1) - 1 ]/[cwoR m (3yraO~ 1 - 1) 1. (12) 

At the side points B1, B:z (Fig. 3) the at tainment of the critical value does not depend on the time of relaxation 

M! B I ) =  M! B2)= 1 + [Um + 3( 'bR m + 1)] Rm 2. (13) 

We note that the r ight-hand sides in (12), (13) are linearly dependent on the relative elongation b. The  distribution 

M.(~o) along the region boundary  is shown in Fig. 4 for three modes that differ  by the degree  of process 

nonstationarity. These results show that at a fixed )/~ a finite interval of Mach numbers ME [0, rain M. ) exists in 
which a gradient catastrophe does not appear: "shockless" motion of the region. In a slow process (7 0 = 0.2) a 
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gradient catastrophe does not appear at the front point, and the minimum value M min corresponds to the extreme 

side points of the profile; for the rear point A2 the quantity M. is finite (line 1 in Fig. 4). If 7 o = 1, then M.(9') 

shifts to the point A2 (line 2 in Fig. 4). For a rapid process (70 = I0) M rain is attained at the front point A1; at the 

points of the branches BIA2 and B2A2 a gradient catastrophe appears at any finite M > M! BI) = M(.B2); at the point 

A2 the function M.(7,) has a discontinuity (line 3 in Fig. 4). 

We also note that in the "shockless" range the dependence of OT/On on the Mach number is monotonic in 

a slow process, and at 7 o > 1 this relation has a markedly nonmonotonic character (Fig. 5). The effect of the Mach 

number on the temperature gradient is most appreciable at the front and rear points of the boundary profile (Fig. 

6). In passage from subsonic to supersonic "shockless" motion of the region, the direction of the temperature 

gradient at these points changes to the opposite; this phenomenon has already been noted in the one-dimensional 

case (see Fig. 2). At other points of the profile the effect of M on grad T is less substantial: the three graphs in 

Fig. 6 have pronounced quantitative differences near the points A1 and A2. 

Let us sum up. High-intensity heat transfer in the  vicinity of moving sub- and supersonic boundaries is 

accompanied by interesting physical phenomena. In the case of a plane self-similar closed boundary the relaxation 

properties of the temperature gradient manifest themselves in a different manner for rapid and slow processes. 

Formulas are obtained for the critical Mach number upon attainment of which a gradient catastrophe begins. It is 

shown that there is a fundamental difference between the front point and the extreme side points of the boundary: 

for the latter M. does not depend on the time of thermal relaxation. The properties of the "shockless" mode of 

motion of one- and two-dimensional self-similar boundaries are studied. 

N O T A T I O N  

T, temperature; q, vector of the specific heat flux; t, time; x, y, rectangular Cartesian coordinates; 2, 

coefficient of thermal conductivity; c, volumetric specific heat capacity; 7, time of heat-flux relaxation; w, velocity 

of heat propagation; M, thermal Mach number; a, fl, self-similar variables; T2 = (d2T/O~i)m; H = (OiH/d~i)m; 0 i 

= (oiO/dr2)m; gi = (Oig/Ori)m; ~, scalar potential; O, u, v, g, h, unknown functions of.the self-similar variables a ,  

fl; a, ai, b i, n, k, s, Ii, 12, rli, ~i,r], ~, 70, WO, fo, to, LI, L2, constant parameters characterizing the thermophysical 
properties of the medium and the conditions of heat transfer on the moving boundary of the region. Subscripts and 

superscripts: dot above the symbol of a function, ordinary differentiation with respect to its argument; independent 

variable as a subscript, partial differentiation; b, scale of the quantity; m, values of the function on the studied 

moving boundary; 1 as a superscript, values of the function on the second boundary. 
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